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Abstract 

The design, energy output, and cost effectiveness of CSP projects critically depend on the resource in direct 
normal irradiance (DNI). Many modeled DNI datasets now exist, and a recent preliminary study has shown 
some areas of serious disagreement in Europe. So far, no rigorous performance assessment has been under-
taken for other parts of the world. The present contribution focuses on North Africa and bordering regions, 
which have great CSP potential. The mean monthly and annual performance of eight different modeled 
datasets providing DNI is analyzed here, with respect to measured radiation data at 14 sites. Relatively good 
results are generally obtained for sites in southern Europe. Serious problems, however, are found at various 
sites in North Africa or Middle East. Most of these problems appear linked to inadequate aerosol optical 
depth data used by the models, and to the dust storms from the Sahara that regularly, and strongly, modify the 
aerosol regime. A method that can potentially correct these problems, or allow for model benchmarking 
based on a reference aerosol database, is proposed. The bankability of current datasets is questioned. 

Keywords: CSP, Direct normal irradiance (DNI), aerosol optical depth, radiative model validation, solar re-
source assessment, Sahara dust storms. 

1. Introduction 

Many concentrating solar power (CSP) projects are currently being proposed in the world, and particularly in 
Mediterranean and North African regions. Among all these projects, the ambitious Desertec initiative has 
gathered considerable attention. To perform correctly and be cost effective, CSP power plants must rely on a 
very intense resource in direct normal irradiance (DNI). Accurate knowledge of the DNI resource in sunny 
regions is essential to assess the technical and economic viability of any CSP project, since, as a first ap-
proximation, the energy output of a CSP plant is proportional to its input, i.e, DNI. For the region under scru-
tiny here (loosely defined as the area between latitudes 8 and 40¡N, and longitudes 17¡W to 51¡E), existing 
solar maps of mean DNI do show an abundant resource. These maps are only based on modeled data, since 
weather stations measuring DNI are extremely scarce over that region. At its early stages, any CSP project 
must also rely (at least in great part) on modeled data. Therefore, an essential issue is the reliability of these 
modeled datasets and maps. This issue has not yet received the attention it deserves, considering the impor-
tance of its financial implications. The only known preliminary report that has been devoted to an intercom-
parison of a few direct solar radiation maps was limited to Europe [1], where many solar radiation monitoring 
stations existÑ thus providing abundant data for the fine tuning and validation of modeled datasets before 
they are even released to the public. Still, that study revealed a number of problem areas where significant 
disagreement existed between the tested datasets. Unfortunately, some of these areas are also those with the 
best solar resource. It was found that differences of more than !30% between datasets were likely in many 
regions. From the perspective of financial institutions or policy makers, any single large CSP project that 
would not deliver its nominal energy output due to inaccurate resource evaluation would cast a doubt on the 
whole industry, akin to what happened in the early years of large wind energy projects. 

The critical questions that all developers and investors of CSP projects in North Africa are confronted with 
could thus be summarized this way: (i) Are the existing DNI datasets of sufficient quality and accuracy to be 
considered ÒbankableÓ?, and (ii) Are modeled DNI data of sufficient accuracy to replace costly local meas-
urements? This contributionÕs goal is to help answer these fundamental questions, and propose a method that 
could potentially improve the accuracy of the existing DNI datasets over North Africa. 



2. Aerosol effects on DNI 

The radiative effects of aerosols are function of different variables. The most important one is called the 
aerosol optical depth (AOD), which varies widely with wavelength. This spectral variation can be described 
by •ngstršmÕs law, which defines the turbidity coefficient, ! , and the wavelength exponent, " . The com-
bined effects of "  and !  on DNI can be evaluated through radiative transfer calculations. These calculations 
must also take the sun geometry into account, as well as the extinction effect of other atmospheric constitu-
ents, most importantly water vapor (measured in terms of precipitable water, PW). For North Africa, some 
calculations of this type have been made with the SMARTS code [2]. For sea-level conditions and an air 
mass of 1.25, which is typical of the conditions of CSP operation at low latitudes, it is found that a change 
from relatively clean conditions (!  = 0.1, "  = 1.1) to dust storm conditions (!  = 1, "  = 0) results in a severe 
decrease in DNI, from !850 to !300 W/m2. Additional calculations with SMARTS show that DNI is about 
3Ð5 times more sensitive to !  than global horizontal irradiance (GHI), depending on air mass and atmos-
pheric conditions. This implies that, due to the usually large uncertainties in ! , DNI predictions might be in 
error even if those of GHI appear correct. 

3. Sources of DNI and aerosol data 

3.1. Measured DNI data  
Within the present study area, datasets from 14 weather stations with high-quality radiation measurements are 
used (Table 1). Due to the paucity of DNI measurements, some stations measuring only GHI and diffuse irra-
diance (DIF) have been added to the pool. The direct horizontal irradiance (DHI) is obtained by simple dif-
ference between GHI and DIF. For one site only (TEI Crete), data at 1 to 5 minutes intervals were available, 
so that DNI could be derived from DHI, using the ÒinstantaneousÓ zenith angle. In all other cases, however, 
only daily or monthly data of DHI were available, thus precluding the determination of DNI by the same 
method. DHI is lower than DNI, but proportional to it. On a monthly basis, the ratio DHI/DNI equals the 
cosine of the effective monthly-average zenith angle. Since this quantity can only be approximated using 
empirical means (which might introduce non-negligible uncertainties), no attempt at transforming DHI into 
DNI has been made in such cases. The two main data sources here are BSRN (http://bsrn.awi.de) and WRDC 
(http://wrdc.mgo.rssi.ru). The former source provides 1-min data, whereas only daily values are available 
from the latter. Therefore, DHI rather than DNI was used for all WRDC sites. Datasets of 5 years or more 
were also used to define Òlong-termÓ monthly averages, or ÒclimatologiesÓ. Ideally, at least about 15 years of 
data should be used to define the climatology of DNI, considering its large interannual variability [3]. How-
ever, this stringent requirement had to be relaxed here due to the paucity of long datasets.  

Station  Lat.  Long.  Elev. (m)  DNI or DHI  # Months  Source  

Aswan  23.97  32.78  193  DNI  123  [4]  
Bahrain  26.24  50.80  25  DHI 12  [5]  
Caceres  39 .47  -6.33  405  DHI 139  WRDC 
Cairo  30.13  31.47  35  DNI  173  [4]  
Granada  37.13  -3.63  687  DHI 76  WRDC 
Huelva  37.28  -6.92  19  DHI 40  WRDC 
Ilorin  8.32  4.34  350  DHI 95  BSRN 
Izana  28.31  -16.50  2391  DHI 51  WRDC 
Santa Cruz (Tenerife)  28.27  -16.20  25  DHI 26  WRDC 
Sede Boker  30.86  34.78  480  DNI  83  BSRN 
Solar Village  24.91  46.40  764  DNI  51  BSRN 
Tamanrasset  22.79  5.53  1377  DNI  123  BSRN 
TEI Crete  35.30  25.10  122  DNI  15  SolRad -Net  
Valencia  39.48  -0.38  23  DHI 55  WRDC 

Table 1. Radiation measurement stations used for this study. 

3.2. Modeled DNI data 
Various sources of modeled DNI data with large geographic coverage currently exist, which should help the 
rapid development of CSP projects in many countries. Eight datasets are used here, representing at least half 
of what is currently available (Table 2). Two of them are in the public domain and available online: NASA-
SSE and NREL-SWERA. One of them can be obtained freely if for research purposes (DLR-ISIS). Another 



one is actually not a dataset, but commercial software to calculate radiation and other weather information by 
interpolation (Meteonorm; version 6.1.0.19 is used here). Finally, four datasets represent the burgeoning 
marketplace for commercial data vendors: 3Tier, EnMetSol from the University of Oldenburg, HelioClim3 
from the Soda online service, and SolarGIS from GeoModel. These vendors graciously provided data for 
some of the ground-truth sites listed in Table 1 especially for this study, with the exception of HelioClim3, 
for which the only year (2005) freely available from the SoDa service could be used here. Note that the DNI 
dataset from the public-domain PVGIS website (http://re.jrc.ec.europa.eu/pvgis) could not be used because it 
is not accessible, unfortunately. Whereas Meteonorm makes irradiation predictions for any ground location, 
all the other datasets provide gridded data. The grid sizes vary widely, between coarse resolution (ISIS), me-
dium resolution (SSE and SWERA), and what is currently labeled ÒhighÓ resolution (3Tier, EnMetSol, He-
lioClim3 and SolarGIS). Furthermore, the latter four datasets offer hourly or sub-hourly (15-min) data series. 
For the present study, only monthly data and monthly climatologies are used. However, whenever a month is 
affected by a bias, the corresponding hourly time series must also be biased in some way. Conversely, bias-
free annual results may mask large alternating monthly biases, which may affect bankability, etc. Thus, the 
results of the present study have potentially large implications. Note that, since diffuse irradiance results were 
not available from all datasets, the assessment of DHI has a reduced scope compared to that of DNI. 

Dataset Developer Website Spatial reso-
lution 

Temporal 
resolution Period Spatial coverage 

3Tier 3Tier http://www.3tier.com ≈3x3 km Hourly 1998–present World 
EnMetSol Univ. Oldenburg http://www.energy-meteorology.de ≈5x5 km 15-min 2004–present Some continents 
HelioClim3 SoDa http://www.soda-is.com ≈5x5 km 15-min 2004–present Some continents 
ISIS DLR http://www.pa.op.dlr.de/ISIS 280x280 km Monthly 1984–2004 World 
Meteonorm Meteotest http://www.meteonorm.com ≈1x1 km MC† variable World 
SolarGIS GeoModel http://geomodel.eu ≈5x5 km 15-min 2004–present Some continents 
SSE NASA http://eosweb.larc.nasa.gov/sse 1x1° MC† 1983–2005 World 
SWERA NREL http://swera.unep.net 40x40 km MC† 1985–1991 Some continents 

Table 2. Modeled dataset sources used in this study. (†MC: Monthly climatology only). 

3.3. Aerosol data 
All radiation sites (except Aswan) of Table 1 are collocated or near another station where sunphotometric 
measurements are performed. Such measurements (here from NASAÕs Aeronet network) provide AOD at up 
to seven wavelengths, as well as PW. For this study, the spectral AOD data has been reduced to monthly-
average "  and !  values, using a conventional technique [6]. Figures 1 and 2 show examples of seasonal and 
interannual variations in !  at four of the sites under scrutiny, from the cleanest (Izana) to the most turbid 
(Ilorin). The large interannual variance (such as in June at Izana and Tamanrasset) is a direct function of dust 
storm activity in the Sahara. Since all current modeled datasets in Table 2 (with the exception of 3Tier, to our 
knowledge) only consider a long-term climatology of AODÑ rather than actual daily or monthly dataÑ a 
significant interannual variation in DNI performance of these datasets can be expected. 
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Fig. 1. Interannual variation of the mean monthly turbidity coefficient at Izana (left) and Tamanrasset 
(right). The climatology is indicated by the continuous red line. 
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Fig. 2. Same as Fig. 1, but for Solar Village and Ilorin. 

4. Monthly performance 

The performance of the modeled monthly climatologies of DNI and DHI is assessed first. Percent differences 
between the modeled and measured long-term mean monthly DHI for two stations (Caceres and Granada) in 
southern Spain appear in Fig. 3. The seasonal variations in measured DHI (shown in the top plots) are simi-
lar, whereas the modeled DHIÕs performance varies somewhat from one month to the other. Due to error can-
cellations throughout the year, the overall annual differences are all within ±10% of the measured mean. 

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Long-term mean DHI
Caceres

DHI

3Tier
Meteonorm
SSE
SWERA

D
H

I 
(k

W
h

/m
2
)

%
 D

iffe
re

n
c
e

Month

Yr

  

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Long-term mean DHI
Granada

DHI

3Tier
Meteonorm
SSE
SWERA

D
H

I 
(k

W
h

/m
2
)

%
 D

iffe
re

n
c
e

Month

Yr

 

Fig. 3. Monthly performance results at Caceres and Granada, based on climatologies. 

For North Africa, however, the situation is different. At Aswan, the results of Meteonorm and SWERA are 
similar to those in Fig. 3, with mean annual differences of only +3% and -3%, respectively. The two datasets 
with lower spatial resolution (ISIS and SSE) do not perform as well, but still manage to predict the annual 
average within -10% and +10%, respectively. For Aswan, like for Caceres or Granada, using an average of 
all the available datasets can improve the results, and bring the annual bias down to !0. Results for Cairo, 
Ilorin, Sede Boker and Tamanrasset show much larger monthly and annual differences (Fig. 4), and do not 
support the same recommendation. Interestingly, for Ilorin and Tamanrasset, the monthly differences exhib-
ited by most datasets are in phase with the seasonal AOD variation (Figs. 1 and 2). It is thus likely that the 
noted discrepancies can be explained by the use of incorrect gridded AOD climatologies in the models. In the 
case of Cairo, all models (particularly SSE) tend to overestimate all the time. It is highly likely that these 
models do not take into account all the radiative extinction processes that occur in a polluted urban environ-
ment. Moreover, the accelerated urbanization of Cairo has resulted in increased AOD (from local aerosol 
production) and decrease in global and direct irradiance [4], [7], usually referred to as the ÒdimmingÓ effect. 
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Fig. 4. Same as Fig. 3, but for Cairo, Ilorin, Sede Boker and Tamanrasset. 

Although Ilorin is in a dusty and cloudy area, and therefore would probably not attract any CSP development, 
its results are instructive by the magnitude of the monthly differences obtained here, which oscillate between 
-75 and +120% (Fig. 4). Some part of this disagreement may be explained by the large seasonal and interan-
nual variance in AOD (Fig. 2), the dust and biomass burning aerosolsÕ absorption and scattering characteris-
tics, and associated uncertainties. Moreover, it is most likely that the algorithms in current use cannot ade-
quately reproduce the intricacies of radiative transfer though intense tropical cloudiness. 

Results for individual months are equally instructive. For instance, Fig. 5 shows two typical cases for which 
limited scatter exists between models, while they all underpredict at high DNI. This type of summer bias also 
occurs at Bahrain, as well as (to some extent) Caceres, Granada and Huelva. In such cases, the datasets can 
be corrected with the method explained in Section 5. At Tamanrasset, most datasets exhibit substantial scatter 
(Fig. 6), with the exception of SolarGIS, which rather reflect the same summer bias as in Fig. 5. Results for 
Solar Village show important scatter too, but data from only two datasets were available there. At Solar Vil-
lage, like at Tamanrasset, there is large variance in the interannual AOD, which might explain the disagree-
ment in modeled DNI. Finally, the case of Izana is interesting because of its very high solar resource. Both 
3Tier and SolarGIS have difficulty keeping the monthly bias under ±20%. In contrast, the 3Tier results at 
Santa Cruz are nearly perfect. The latter site is only 30 km away from Izana, but near sea level. Izana being 



above the boundary layer where both aerosols and water vapor are concentrated, the AOD and PW are much 
less there than at Santa Cruz. On average, IzanaÕs PW is 14Ð26% of that at Santa Cruz (depending on sea-
son), whereas comparative numbers for AOD are 20Ð79%. The larger range in AOD difference may be ex-
plained by the occurrence of dust storms: AOD is then high anywhere since dust clouds travel at altitudes 
above 3 km. Irregular occurrences of dust storms, and related seasonal variations in AOD as a function of 
elevation, are usually not considered in radiative models, which can explain the scatter in the Izana results. 
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Fig. 5. Monthly performance results for various modeled datasets at TEI Crete and Sede Boker. 
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5. A posteriori irradiance data correction 

The results discussed above clearly indicate that the disagreement between modeled and measured DNI is 
often linked to the modelsÕ AOD input data. Various projects exist to improve the quality of AOD databases. 
A method of regional combination and correction of multiple satellite datasets has recently been proposed 
[8], but is still in its infancy. Arguably, the desirable AOD databases of sufficient quality for worldwide accu-
rate DNI prediction are still years away. In the mean time, it might be possible to remove some of the ob-
served bias in monthly DNI data, provided local AOD measurements are available. Considering the current 
paucity in AOD ground-truth sites in the world, this might have only limited applicability. However, another 
application of this correction method would be to intercompare or ÒbenchmarkÓ DNI datasets after normali-
zation to some common, ÒreferenceÓ AOD database, which remains to be defined. Most radiative models 
have separate, but linked, algorithms for the clear-sky and all-sky DNI. (A notable exception is SSE.) If the 
clear-sky DNI is available, in addition to the all-sky DNI that users have primary interest in, a correction of 
the clear-sky DNI can be done, using reference AOD data. In the present case, this method could only be 
applied to 3Tier, EnMetSol, Meteonorm and SolarGIS, due to lack of clear-sky data in the other cases.  

Since the all-sky DNI is proportional to the clear-sky DNI, DNIc, it is then just a matter of correcting the ex-
isting all-sky DNI by the ratio DNIc new/DNIc old. The REST2 model [6], which is currently unsurpassed in 
terms of DNI prediction accuracy over a wide range of atmospheric conditions [9], is used here to obtain 
DNIc new. For the present tests, data of AOD and PW have been obtained as described in Section 3.3. The 
usual cumulative statistics (MBD and RMSD) are used here to characterize the accuracy of the predicted 
monthly DNI (or DHI) with respect to its measured counterpart, before and after applying the correction de-
scribed above. Sample results appear in Table 3, and show that improvements (slight to substantial bias re-
duction in particular) are indeed possible in most cases (bold case indicates improved statistics). A notable 
exception is seen with Meteonorm, whose climatologies are not always improved, probably because it uses 
interpolation rather than a local radiative calculation as with the other datasets. The case of Ilorin stands out 
again, with only partial improvement, thus confirming that AOD uncertainties are not the only source of 
problem in such a cloudy climate.  

Site/Model Mean Daily  Monthly values Climatology 

 Irradiation Before After Before After 

 (kWh/m2) MBD RMSD MBD RMSD MBD RMSD MBD RMSD 
Ilorin 3.231 (DHI)         

3Tier  76.3 83.8 22.0 45.5 79.5 84.3 25.8 46.8 
Meteonorm  - - - - 46.4 54.0 -1.8 25.9 

          
Izana 5.184 (DHI)         

3Tier  -12.9 15.1 6.1 9.4 -13.0 14.0 -4.1 12.4 
Meteonorm  - - - - -41.4 44.8 -45.7 48.9 

          
Sede Boker 6.675 (DNI)         

3Tier  -12.3 13.7 6.6 11.4 -12.9 13.5 -7.4 11.5 
EnMetSol  -16.3 18.0 2.3 9.4 -16.2 16.9 -10.6 12.0 
Meteonorm  - - - - -3.7 8.6 -17.9 22.3 
SolarGIS  -12.8 15.1 4.9 9.8 -12.0 14.1 -7.8 12.4 

          
Tamanrasset 6.631 (DNI)         

3Tier  4.0 17.0 -1.5 8.6 2.2 15.4 -3.0 6.2 
Meteonorm  - - - - 15.5 19.8 -12.3 15.7 
SolarGIS  -4.0 7.2 -2.4 11.3 -4.9 6.4 -4.4 8.1 

          
TEI Crete 5.231 (DNI)         

3Tier  -16.8 20.1 -2.3 8.3 - - - - 
EnMetSol  -19.8 25.1 -0.4 5.3 - - - - 
SolarGIS  -13.0 16.2 0.4 7.2 - - - - 

Table 3. Performance statistics (%) before and after correcting DNI using measured aerosol data. 

Although the present corrections are for monthly data, they can be applied directly to hourly or 15-min time 
series as well, since all current models used to derive time series consider only monthly AOD input data for 
their calculations. This correction method is therefore also of potential interest to users who need time series 
to simulate the thermal performance of CSP installations, or to obtain bankable assessments, for instance.  



6. Conclusion 

Using high-quality radiation data from 14 sites in North Africa and bordering regions, a preliminary assess-
ment of the performance of eight DNI datasets (from both free and commercial sources) is proposed. It is 
found that, in general, these datasets are reasonably accurate over southern Europe. Over North Africa and 
the Middle East, however, the present results are generally not as good, and even reveal some important 
problem areas. Large monthly scatter is observed in many cases. Even the annual-mean DNI predictions may 
be affected by considerable biases (such as for Cairo and Ilorin).  

An analysis of coincident radiation and aerosol data from collocated instruments shows that, in most cases, 
these biases are caused by inaccurate aerosol data being used to model DNI. An a posteriori correction tech-
nique is proposed to remove a substantial part of the observed bias in existing DNI datasets (monthly data or 
hourly time series). It is established that the current datasets would benefit from improved aerosol data, tak-
ing the variability of Saharan dust storms into account, in particular. 

The large differences between modeled and measured DNI observed at various sites cast a doubt on the accu-
racy of solar resource maps and datasets for CSP applications in or around North Africa. Monthly data and 
hourly time series currently used for bankability assessments might embed large biases, depending on 
dataset, climate area, etc. Until such biases and uncertainties are better understood and ultimately corrected, it 
is safe to recommend local high-quality measurements to corroborate, supplement or validate modeled data.  
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